The number of ways of arranging n unlike objects in a line is n! (pronounced ‘n factorial’). n! = n × (n – 1) × (n – 2) ×…× 3 × 2 × 1 How many different ways can the letters P, Q, R, S be arranged? The answer is 4! = 24. This is because there are four spaces to be filled: _, _, _, _ The first space can be filled by any one of the four letters.
For More Information Please Refer: